

28V, 3A, 340KHz Synchronous Step-Down DC/DC Converter

Description

The FR9609 is a synchronous step-down DC/DC converter that provides wide 4.5V to 28V input voltage range and 3A continuous load current capability. At light load condition, the FR9609 can operate at power saving mode to support high efficiency and reduce power lose.

The FR9609 fault protection includes cycle-by-cycle current limit, UVLO, output overvoltage protection and thermal shutdown. The soft-start function prevents inrush current at turn-on. This device uses current mode control scheme which provides fast transient response. Internal compensation function reduces external compensation components and simplifies the design process. In shutdown mode, the supply current is about 1µA.

The FR9609 is available in a SOP-8 (Exposed pad) package, which provides good thermal conductance.

Pin Assignments

SP Package: SOP-8 (Exposed Pad)

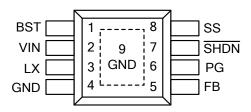
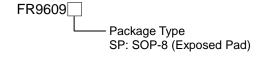


Figure 1. Pin Assignment of FR9609


Features

- Low R_{DS(ON)} Integrated Power MOSFET (90mΩ /70mΩ)
- Internal Compensation Function
- Internal Power Good Function
- Wide Input Voltage Range: 4.5V to 28V
- Output Voltage Range 0.925V to 16V
- 3A Output Current
- 340kHz Switching Frequency
- Adjustable Soft-Start or Internal Soft-Start
- Internal Power Good Function
- Cycle-by-Cycle Current Limit
- Over-Temperature Protection with Auto Recovery
- OVP, UVLO
- Hiccup Short Circuit Protection
- SOP-8 (Exposed Pad) Package

Applications

- STB (Set-Top-Box)
- LCD Display, TV
- Distributed Power System
- Networking, XDSL Modem

Ordering Information

Typical Application Circuit

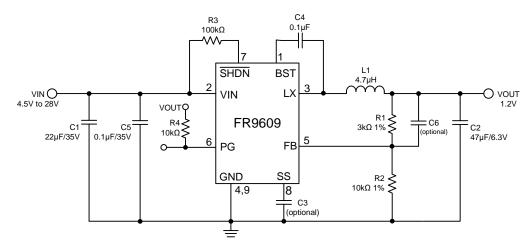


Figure 2. $C_{\text{IN}}/C_{\text{OUT}}$ use Ceramic Capacitors Application Circuit

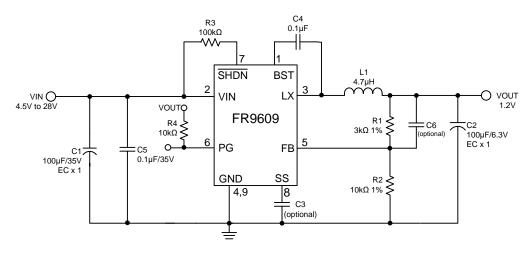


Figure 3. $C_{\text{IN}}/C_{\text{OUT}}$ use Electrolytic Capacitors Application Circuit

V_{IN}=12V, the recommended BOM list is as below.

V _{out}	R1	R2	C6	L1	C2
1.2V	3kΩ	10kΩ	10pF~10nF	4.7µH	47µF MLCC
1.8V	9.53kΩ	10kΩ	10pF~10nF	4.7µH	47µF MLCC
2.5V	16.9kΩ	10kΩ	10pF~10nF	6.8µH	47µF MLCC
3.3V	26.1kΩ	10kΩ	10pF~10nF	10µH	47µF MLCC
5V	44.2kΩ	10kΩ	10pF~10nF	10μH	47µF MLCC
1.2V	3kΩ	10kΩ		4.7µH	100µF EC
1.8V	9.53kΩ	10kΩ		4.7µH	100μF EC
2.5V	16.9kΩ	10kΩ		6.8µH	100µF EC
3.3V	26.1kΩ	10kΩ		10µH	100µF EC
5V	44.2kΩ	10kΩ		10µH	100μF EC

Table 1. Recommended Component Values

Functional Pin Description

Pin Name	Pin No.	Pin Function
BST	1	High side gate drive BST pin. A capacitor rating between 1uF~100nF must be connected from this pin to LX. It can boost the gate drive to fully turn on the internal high side NMOS.
VIN	2	Power supply input pin. Placed input capacitors as close as possible from VIN to GND to avoid noise influence.
LX	3	Power switching node. Connect an external inductor to this switching node.
GND	4	Ground pin. Connect GND to exposed pad.
FB	5	Voltage feedback input pin. Connect FB and V _{OUT} with a resistive voltage divider. This IC senses feedback voltage via FB and regulates it at 0.925V.
PG	6	Open drain power good output pin.
SHDN	7	Enable input pin. This pin is a digital control input that turns the converter on or off. Connect to VIN with a $100k\Omega$ resistor for self-startup.
ss	8	Soft-start pin. This pin controls the soft-start period. Connect a capacitor from SS to GND to set the soft-start period.
Exposed Pad	9	Ground pin. The exposed pad must be soldered to a large PCB area and connected to GND for maximum power dissipation.

Block Diagram

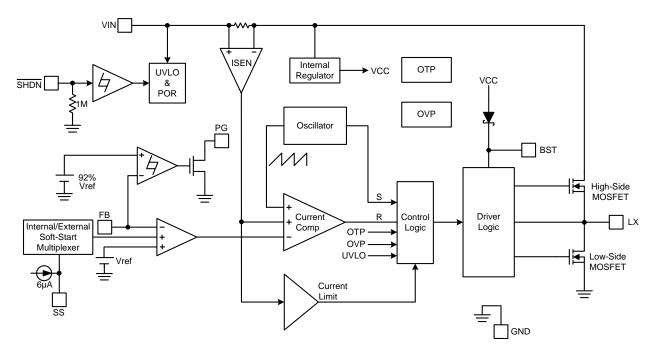


Figure 4. Block Diagram of FR9609

Absolute Maximum Ratings (Note 1)

Supply Voltage V _{IN}	0.3V to +30V
• Enable Voltage V _{SHDN}	0.3V to +30V
• LX Voltage V _{LX}	1V to V _{IN} +0.3V
Dynamic LX Voltage in 10ns Duration	5V to V _{IN} +5V
BST Pin Voltage V _{BST}	V_{LX} -0.3V to V_{LX} +6.5V
All Other Pins Voltage	0.3V to +6V
Maximum Junction Temperature (T _J)	+150°C
• Storage Temperature (T _S)	65°C to +150°C
• Lead Temperature (Soldering, 10sec.)	+260°C
 Power Dissipation @T_A=25°C, (P_D) (Note 2) 	
SOP-8 (Exposed Pad)	2.08W
 Package Thermal Resistance, (θ_{JA}) 	
SOP-8 (Exposed Pad)	60°C/W
 Package Thermal Resistance, (θ_{JC}) 	
SOP-8 (Exposed Pad)	15°C/W

Note 1: Stresses beyond this listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Note 2: θ_{JA} is measured at 25°C ambient with the component mounted on a high effective thermal conductivity 4-layer board of JEDEC-51-7. θ_{JC} is measured at the exposed pad. The thermal resistance greatly varies with layout, copper thickness, number of layers and PCB size.

Recommended Operating Conditions

• Supply Voltage V _{IN}	+4.5V to +28V
Operating Ambient Temperature Range	40°C to +85°C
Operating Junction Temperature Range	40°C to +125°C

Electrical Characteristics

(V_{IN}=12V, T_A=25°C, unless otherwise specified.)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
V _{IN} Input Supply Voltage	VIN		4.5		28	V
V _{IN} Quiescent Current	I _{DDQ}	V _{SHDN} =2V, V _{FB} =1V		0.5		mA
V _{IN} Shutdown Supply Current	I _{SD}	V _{SHDN} =0V			2	μΑ
Feedback Voltage	V _{FB}	4.5V≦V _{IN} ≦28V	0.911	0.925	0.939	V
Feedback OVP Threshold Voltage	V _{OVP}			1.25		V
High-Side MOSFET R _{DS(ON)} (Note 3)	R _{DS(ON)}			90		mΩ
Low-Side MOSFET R _{DS(ON)} (Note 3)	R _{DS(ON)}			70		mΩ
High-Side MOSFET Leakage Current	I _{LX(leak)}	V _{SHDN} =0V, V _{LX} =0V			10	μA
High-Side MOSFET Current Limit (Note 3)	I _{LIMIT(HS)}	Minimum Duty	4.3	5.3		Α
Oscillation Frequency	Fosc		280	340	400	kHz
Short Circuit Oscillation Frequency	F _{OSC(short)}	V _{FB} =0V		110		kHz
Maximum Duty Cycle	D _{MAX}	V _{FB} =0.8V		90		%
Minimum On Time (Note 3)	T _{MIN}			100		ns
Input Supply Voltage UVLO Threshold	V _{UVLO(Vth)}	V _{IN} Rising		4.3		V
Input Supply Voltage UVLO Threshold Hysteresis	V _{UVLO(HYS)}			250		mV
Soft-Start Current	I _{SS}	V _{SS} =0V		6		μA
PG High Threshold	V _{PG (H)}	V _{FB} Rising		92		%
PG Low Threshold	V _{PG (L)}	V _{FB} Falling		82		%
PG Sink Current	I _{PG}	V _{PG} =0.3V		1		mA
SHDN Input Low Voltage	V _{SHDN(L)}				0.4	V
SHDN Input High Voltage	V _{SHDN(H)}		2			V
SHDN Input Current	I _{SHDN}	V _{SHDN} =2V		2		μA
Thermal Shutdown Threshold (Note 3)	T _{SD}			165		°C

Note 3: Not production tested.

Typical Performance Curves

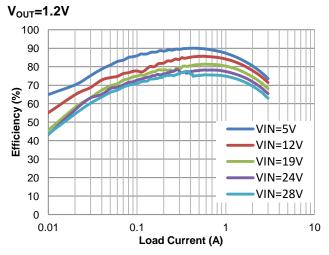


Figure 5. Efficiency vs. Load Current

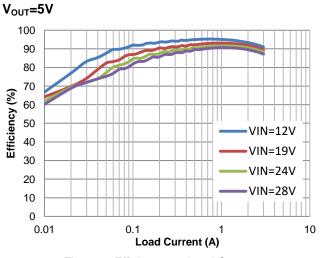


Figure 7. Efficiency vs. Load Current

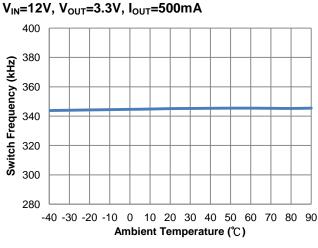


Figure 9. Switch Frequency vs. Ambient Temperature

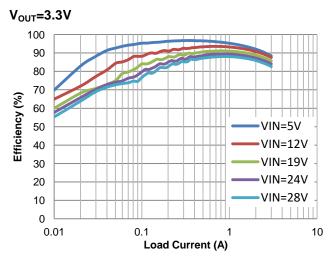


Figure 6. Efficiency vs. Load Current

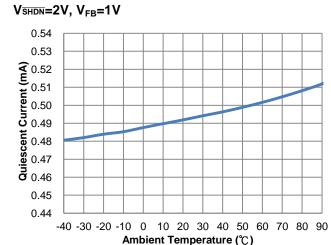


Figure 8. Quiescent Current vs. Ambient Temperature

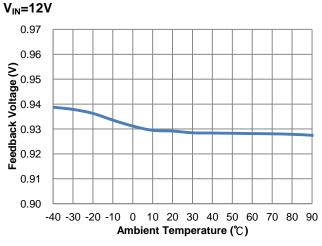


Figure 10. Feedback Voltage vs. Ambient Temperature

Typical Performance Curves (Continued)

 V_{IN} =12V, V_{OUT} =3.3V, C1=10 μ Fx2, C2=47 μ F, L1=10 μ H, T_A =+25°C, unless otherwise noted.

$I_{OUT}=0A$

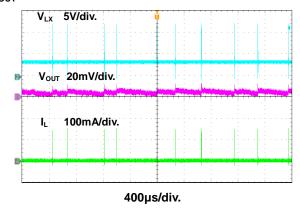


Figure 11. Steady State Waveform

$I_{OUT}=3A$

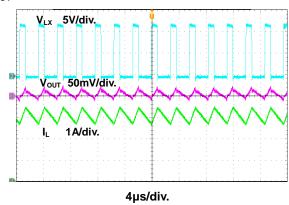


Figure 12. Steady State Waveform

I_{OUT}=0A

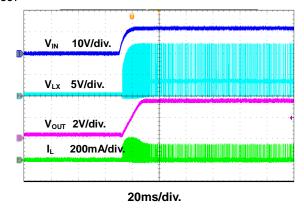


Figure 13. Startup Through Power Supply Waveform

I_{OUT}=3A

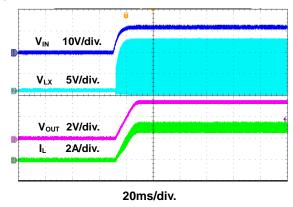


Figure 14. Startup Through Power Supply Waveform

I_{OUT}=0A

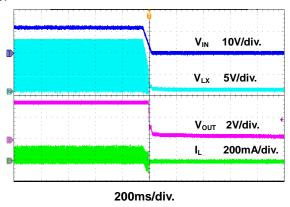


Figure 15. Shutdown Through Power Supply Waveform

I_{OUT}=3A

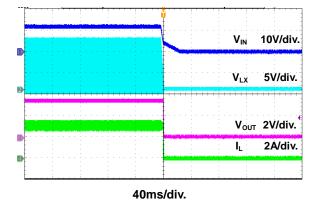


Figure 16. Shutdown Through Power Supply Waveform

Typical Performance Curves (Continued)

 $V_{IN}=12V$, $V_{OUT}=3.3V$, C1=10 μ Fx2, C2=47 μ F, L1=10 μ H, $T_A=+25$ °C, unless otherwise noted

$I_{OUT}=0A$

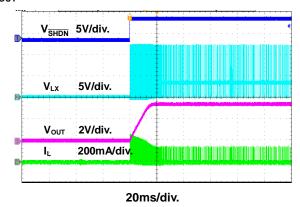


Figure 17. Startup Through SHDN Waveform

$I_{OUT}=3A$

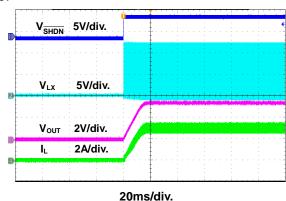


Figure 18. Startup Through SHDN Waveform

$I_{OUT}=0A$

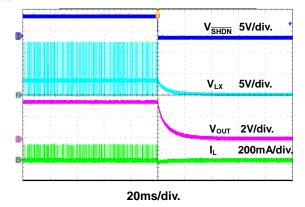


Figure 19. Shutdown Through SHDN Waveform

$I_{OUT}=3A$

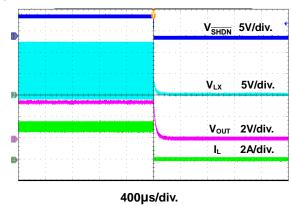


Figure 20. Shutdown Through SHDN Waveform

$I_{OUT}=0A$ to 3A

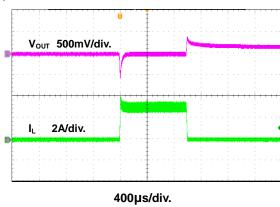


Figure 21. Load Transient Waveform

I_{OUT} =1A to 3A

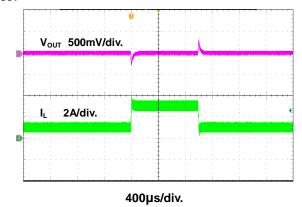


Figure 22. Load Transient Waveform

Function Description

The FR9609 is a high efficiency, internal compensation and constant frequency current mode step-down synchronous DC/DC converter. It has integrated high-side (90m Ω , typ) and low-side (70m Ω , typ) power switches, and provides 3A continuous load current. It regulates input voltage from 4.5V to 28V, and down to an output voltage as low as 0.925V.

Enable

The FR9609 $\overline{\text{SHDN}}$ pin provides digital control to turn on/turn off the regulator. When the voltage of $\overline{\text{SHDN}}$ exceeds the threshold voltage, the regulator will start the soft start function. If the $\overline{\text{SHDN}}$ pin voltage is below the shutdown threshold voltage, the regulator will turn into the shutdown mode and the shutdown current will be smaller than 1µA. For auto start-up operation, connect $\overline{\text{SHDN}}$ to VIN through a 100k Ω resistor.

Soft Start

The FR9609 employs internal and adjustable soft start function to reduce input inrush current during start up. When the device turns on, a 6µA current begins charging the C_{SS} capacitor which is connected from SS pin to GND. The C_{SS} capacitor is recommended to be maximum of 1µF. The equation for the soft start time is shown as below:

$$T_{SS}(ms) = \frac{C_{SS}(nF) \times V_{FB}}{I_{SS}(\mu A)}$$

The V_{FB} voltage is 0.925V and the I_{SS} current is $6\mu A$. If a 0.1 μF capacitor is connected from SS pin to GND, the soft start time will be 15ms.

Output Over Voltage Protection

When the FB pin voltage exceeds 1.25V, the output over voltage protection function will be triggered and turn off the high-side/low-side MOSFET.

Internal Compensation Function

The stability of the feedback circuit is controlled through internal compensation circuits. This internal compensation function is optimized for most applications, and this function can reduce external R, C components.

Input Under Voltage Lockout

When the FR9609 is power on, the internal circuits will be held inactive until $V_{\rm IN}$ voltage exceeds the input UVLO threshold voltage. And the regulator will be disabled when $V_{\rm IN}$ is below the input UVLO threshold voltage. The hysteretic of the UVLO comparator is 250mV (typ).

Over Current Protection

The FR9609 over current protection function is implemented by using cycle-by-cycle current limit architecture. The inductor current is monitored by measuring the high-side MOSFET series sense resistor voltage. When the load current increases, the inductor current will also increase. When the peak inductor current reaches the current limit threshold, the output voltage will start to drop. When the over current condition is removed, the output voltage will return to the regulated value.

Short Circuit Protection

The FR9609 provides short circuit protection function to prevent the device damage from short condition. When the short condition occurs and the feedback voltage drops lower than 0.4V, the oscillator frequency will be reduced to 110kHz and hiccup mode will be triggered to prevent the inductor current increasing beyond the current limit. Once the short condition is removed, the frequency will return to normal.

Over Temperature Protection

The FR9609 incorporates an over temperature protection circuit to protect itself from overheating. When the junction temperature exceeds the thermal shutdown threshold temperature, the regulator will be shutdown. And the hysteretic of the over temperature protection is 60°C (typ).

PG Signal Output

PG pin is an open-drain output and requires a pull up resistor. When the sensed output voltage is below 82% of nominal point, PG is actively held low in soft-start, standby and shutdown. It is released when the output voltage rises above 92% of nominal regulation point.

Application Information

Output Voltage Setting

The output voltage V_{OUT} is set by using a resistive divider from the output to FB. The FB pin regulated voltage is 0.925V. Thus the output voltage is:

$$V_{OUT} = 0.925 V \times \left(1 + \frac{R1}{R2}\right)$$

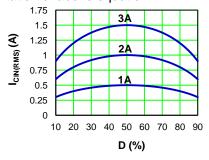
Table 2 lists recommended values of R1 and R2 for most used output voltage.

Table 2 Recommended Resistance Values

V _{out}	R1	R2		
5V	44.2kΩ	10kΩ		
3.3V	26.1kΩ	10kΩ		
2.5V	16.9kΩ	10kΩ		
1.8V	9.53kΩ	10kΩ		
1.2V	3kΩ	10kΩ		

Place resistors R1 and R2 close to FB pin to prevent stray pickup.

Input Capacitor Selection


The use of the input capacitor is filtering the input voltage ripple and the MOSFETS switching spike voltage. Because the input current to the step-down converter is discontinuous, the input capacitor is required to supply the current to the converter to keep the DC input voltage. The capacitor voltage rating should be 1.25 to 1.5 times greater than the maximum input voltage. The input capacitor ripple current RMS value is calculated as:

$$I_{CIN(RMS)} = I_{OUT} \times \sqrt{D \times (1-D)}$$

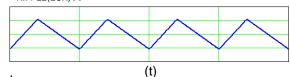
$$D = \frac{V_{OUT}}{V_{IN}}$$

Where D is the duty cycle of the power MOSFET.

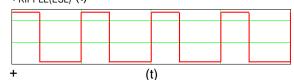
This function reaches the maximum value at D=0.5, and the equivalent RMS current is equal to $I_{OUT}/2$. The following diagram is the graphical representation of above equation.

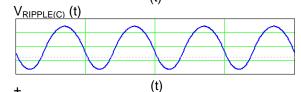
A low ESR capacitor is required to keep the noise minimum. Ceramic capacitors are better, but tantalum or low ESR electrolytic capacitors may also suffice. When using tantalum or electrolytic capacitors, a 0.1µF ceramic capacitor should be placed as close to the IC as possible.

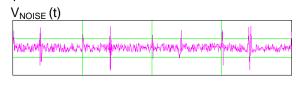
Output Capacitor Selection

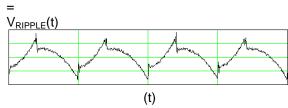

The output capacitor is used to keep the DC output voltage and supply the load transient current. When operating in constant current mode, the output ripple is determined by four components:

$$V_{RIPPLE}(t) = V_{RIPPLE(C)}(t) + V_{RIPPLE(ESR)}(t)$$


$$+V_{RIPPLE(ESL)}(t)+V_{NOISE}(t)$$


The following figures show the form of the ripple contributions.

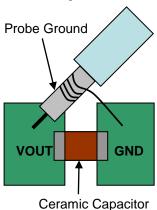

$V_{RIPPLE(ESR)}(t)$



V_{RIPPLE(ESL)} (t)

Application Information (Continued)

$$V_{\text{RIPPLE(ESR, p-p)}} = \frac{V_{\text{OUT}}}{F_{\text{OSC}} \times L} \times \left(1 - \frac{V_{\text{OUT}}}{V_{\text{IN}}}\right) \times \text{ESR}$$

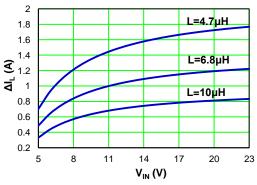

$$V_{RIPPLE(ESL, p-p)} = \frac{ESL}{L} \times V_{IN}$$

$$V_{RIPPLE(C, p-p)} = \frac{V_{OUT}}{8 \times F_{OSC^2} \times L \times C_{OUT}} \times \left(1 - \frac{V_{OUT}}{V_{IN}}\right)$$

Where F_{OSC} is the switching frequency, L is the inductance value, V_{IN} is the input voltage, ESR is the equivalent series resistance value of the output capacitor, ESL is the equivalent series inductance value of the output capacitor and the C_{OUT} is the output capacitor.

Low ESR capacitors are preferred to use. Ceramic, tantalum or low ESR electrolytic capacitors can be used depending on the output ripple requirements. When using the ceramic capacitors, the ESL component is usually negligible.

It is important to use the proper method to eliminate high frequency noise when measuring the output ripple. The figure shows how to locate the probe across the capacitor when measuring output ripple. Remove the scope probe plastic jacket in order to expose the ground at the tip of the probe. It gives a very short connection from the probe ground to the capacitor and eliminating noise.


Inductor Selection

The output inductor is used for storing energy and filtering output ripple current. But the trade-off condition often happens between maximum energy storage and the physical size of the inductor. The first consideration for selecting the output inductor is to make sure that the inductance is large enough to keep the converter in the continuous current mode.

That will lower ripple current and result in lower output ripple voltage. The ΔI_L is inductor peak-to-peak ripple current:

$$\Delta I_{L} = \frac{V_{OUT}}{F_{OSC} \times L} \times \left(1 - \frac{V_{OUT}}{V_{IN}}\right)$$

The following diagram is an example to graphical represent ΔI_1 equation.

V_{OUT}=3.3V, F_{OSC}=340kHz

A good compromise value between size and efficiency is to set the peak-to-peak inductor ripple current ΔI_L equal to 30% of the maximum load current. But setting the peak-to-peak inductor ripple current ΔI_L between 20%~50% of the maximum load current is also acceptable. Then the inductance can be calculated with the following equation:

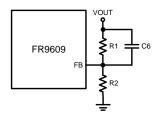
$$\Delta I_L = 0.3 \times I_{OUT(MAX)}$$

$$L = \frac{(V_{IN} - V_{OUT}) \times V_{OUT}}{V_{IN} \times F_{OSC} \times \Delta I_{I}}$$

To guarantee sufficient output current, peak inductor current must be lower than the FR9609 high-side MOSFET current limit. The peak inductor current is as below:

$$I_{PEAK} = I_{OUT(MAX)} + \frac{\Delta I_L}{2}$$

$$I_{PEAK}$$

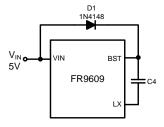

$$I_{OUT(MAX)}$$

Application Information (Continued)

Feedforward Capacitor Selection

Internal compensation function allows users saving time in design and saving cost by reducing the number of external components. The use of a feedforward capacitor C6 in the feedback network is recommended to improve the transient response or higher phase margin.

For optimizing the feedforward capacitor, knowing the cross frequency is the first thing. The cross frequency (or the converter bandwidth) can be determined by using a network analyzer. When getting the cross frequency with no feedforward capacitor identified, the value of feedforward capacitor C6 can be calculated with the following equation:


$$C6 = \frac{1}{2\pi \times F_{CROSS}} \times \sqrt{\frac{1}{R1} \times \left(\frac{1}{R1} + \frac{1}{R2}\right)}$$

Where F_{CROSS} is the cross frequency.

To reduce transient ripple, the feedforward capacitor value can be increased to push the cross frequency to higher region. Although this can improve transient response, it also decreases phase margin and causes more ringing. In the other hand, if more phase margin is desired, the feedforward capacitor value can be decreased to push the cross frequency to lower region. In general, the feedforward capacitor range is between 10pF to 10nF.

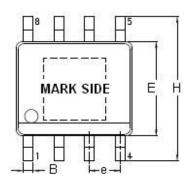
External Diode Selection

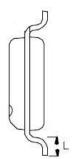
For 5V input applications, it is recommended to add an external boost diode. This helps improving the efficiency. The boost diode can be a low cost one, such as 1N4148.

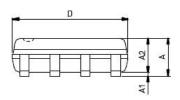
PCB Layout Recommendation

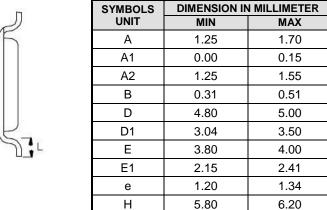
The device's performance and stability are dramatically affected by PCB layout. It is recommended to follow these general guidelines shown as below:

- Place the input capacitors and output capacitors as close to the device as possible. The traces which connect to these capacitors should be as short and wide as possible to minimize parasitic inductance and resistance.
- 2. Place feedback resistors close to the FB pin.
- 3. Keep the sensitive signal (FB) away from the switching signal (LX).
- 4. The exposed pad of the package should be soldered to an equivalent area of metal on the PCB. This area should connect to the GND plane and have multiple via connections to the back of the PCB as well as connections to intermediate PCB layers. The GND plane area connecting to the exposed pad should be maximized to improve thermal performance.
- 5. Multi-layer PCB design is recommended.

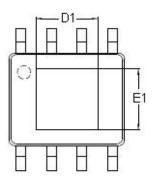

Figure 23. Recommended PCB Layout Diagram

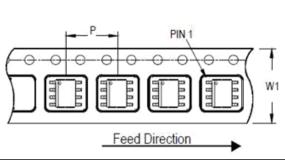

1.27

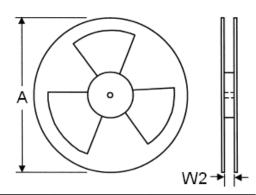



Outline Information

SOP-8 (Exposed Pad) Package (Unit: mm)






Note4: Followed From JEDEC MO-012-E.

0.40

Carrier Dimensions

Tape Size	Pocket Pitch	Reel Size (A)		Reel Width	Empty Cavity	Units per Reel
(W1) mm	(P) mm	in	mm	(W2) mm	Length mm	
12	8	13	330	12.4	400~1000	2,500

Life Support Policy

Fitipower's products are not authorized for use as critical components in life support devices or other medical systems.